Posts

Showing posts from August, 2012

Featured Post

Hereford and Red Angus Heifers Recruited for Genomics Research

The University of Missouri is recruiting 2,500 Hereford heifers and 2,500 Red Angus heifers to participate in a heifer puberty and fertility genomic research project. Heifers should be registered Hereford, registered Red Angus, or commercial Hereford or Red Angus. Hereford x Red Angus crossbred heifers targeted for the Premium Red Baldy Program would also be a good fit for the research project. Producers must be willing to work with a trained veterinarian to collect the following data: ReproductiveTract Scores collected at a pre-breeding exam 30 to 45 days prior to the start of the breeding season. PelvicMeasurements (height and width) collected at the same pre-breeding exam 30 to 45 days prior to the start of the breeding season. Pregnancy Determination Using Ultrasound reporting fetal age in days. Ultrasound will need to occur no later than 90 days after the start of the breeding season. In addition, heifers must have known birth dates and have weights recorded eithe

Asking the Right Questions...

Drovers Cattle Network recently shared this  video  in which they discussed the recent changes at Igenity.  The conversation continued by discussing strategies (and products) to reduce risk and select the best replacement heifers and cows during drought conditions.  So, that got me interested in the products referred to by Dr. Jim Gibb.  A quick search lead me to here and here on Igenity's website.  At the end of the second link it says: Have more questions? Let an expert give you the inside information — igenity.support@neogen.com So, what questions should beef producers be asking?  As we previously discussed , some beef genomic technologies return valuable information (tests for traits with genes of large effect, genomic selection) and some do not (gene tests predicting a complex trait with a small number of markers).  Following are some questions (and suggested actions) to get you started: 1. Has the test been validated by the NCBEC?       (If it is a new test the proce

Quality Beef:
A result of reproductive technologies and genetic selection

I recently came upon this post about Cattlemen's Evolution on the Bridging the Cattle Gap blog.  I loved that he explained the link between reproductive technologies and genetic selection.  In addition to the points raised in his post, artificial insemination also increases the selection intensity.  As we use a smaller number of elite sires that are further from the average of the breed or population, genetic change becomes more rapid. On August 30th 2012, the College of Agriculture, Food and Natural Resources at the University of Missouri will be launching a new program called Quality Beef-By the Numbers .  This program aims to assist commercial cattle operations to realize increased income as a result of utilizing reproductive and genomic technologies.  Previously, progressive cattle operations have not been rewarded for producing a higher quality product.  This program aims to change that situation.  I encourage you to check it out. Scott Brown, one of the organizers of Qua

Gene Tests vs Genomic Selection

Two different paradigms have existed regarding the use of DNA markers in animal breeding. The first strategy is gene tests, also referred to as marker assisted selection (MAS).  The second is genomic selection. Gene Test Gene tests attempt to predict a trait or breeding value based on the results (genotypes) of a small number of DNA markers. These tests are either developed using a candidate gene approach or from genome-wide analyses.  In a candidate gene approach, a scientist assumes which genes influence a trait and investigates variants within those genes for an association with the trait of interest.  These assumptions can be wrong and a scientist may identify an association by random chance.  In a genome-wide approach, a scientist makes no assumptions about which genes influence the trait, but analyzes markers evenly spaced throughout the genome. Genomic Selection In genomic selection, thousands of evenly spaced DNA markers are genotyped in a large population of animals